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Introduction 

 

Dimension Inc is well known for development of advanced image processing technologies 

pertinent to technically demanding video applications such as IoT, Surveillance, Analytics, Video 

Conferencing, VR/AR, and Streaming Video Platforms. In particular, Dimension has focused 

upon image and video reconstruction, denoise, and compression (CODEC) as those processing 

components most critical to video system performance optimization. From a technical 

perspective, this work has been successful in creation of algorithms and systems of extraordinary 

power and sophistication. Most notably, combination of superresolution reconstruction, 

spatiotemporal denoise, Nyquist refinement, and superresolution-based video compression have 

together enabled processing gains at levels heretofore unavailable in the video technology 

marketplace. 

 

An improved image and video performance capability notwithstanding, what isn’t so apparent is 

Dimension’s flexible instancing of technology block-components, performed in such manner 

development of more complex systems is greatly facilitated. More pointedly, fundamental 

processing blocks are integrated hierarchically in assembly of more complex systems. This 

simple ‘LEGO-esque’ gambit is not as trivially simple as some might imagine, and in fact must 

be rooted in a comprehensive strategic plan for which efficient system integration accrues as an 

explicit objective. In Dimension’s case, software reuse is critical to conservation of development 

resources. This has in turn led to design of the aforementioned video applications as integrated 

products for which a significantly lowered life-cycle cost (LCC) is also indicated. 

 

Accordingly, in what follows, Dimension technology is presented as a hierarchy of building-

block resources, ranging from those most fundamental in terms of range of applicability, to those 

most complex in terms of block integration and functional specialization. This overview then 

terminates with presentation of complete video applications incorporating Dimension technology 

as system components. As described above, Dimension technology components are generally 

categorized as basic or non-basic with non-basic components hierarchically integrating basic 

components within some higher level construct: 

 

Component Basic Notes 
   

ASVD  Adaptive Spatio-Temporal Video Denoise 

PMA  Pattern Manifold Assembly 

SREC  Superresolution Enabled CODEC 

SREU  Superresolution Enabled Upscaler 

SRED  Superresolution Enabled Downscaler 

SRNR  Superresolution Nyquist Refinement 

SRRS  Superresolution Video Rescaler 

VPC  Video Preconditioner 

VTT  Video to Text 

   

 

Table-1: Dimension Technology Components 

 



Hierarchical relationships among Dimension technology components displayed in table-1 are 

summarized in table-2 below: 

 

Component ASVD PMA SREC SREU SRED SRNR SRRS VPC 
         

SREC         

SREU         

SRED         

SRNR         

SRRS         

VPC 
1        

         

        
1Optional 

 

Table-2: Dimension Technology Component Hierarchical Integration 

 

The technology components cited in tables-1,2 are then flexibly instanced as design building-

blocks within a number of Dimension applications and productized APIs: 

 

Component SREC SRRS VTT Notes 
     

BDA1    BigData Assembly 

BDE1    BigData Exploration 

BDD1    BigData Discovery 

MFVA    Multi-Frame Video Analytics 

SRAU    Superresolution Archiver Utility 

SRRU    Superresolution Restoration Utility 

     

    1BD-IDE Application Component 

 

Table-3: Dimension Application/API Instancing of Technology Components 

 

In what follows, a short description is provided for each cited technology component and 

application. 

 

  



ASVD 

 

In most general terms, the spatiotemporal formalism is favored in video noise filtering 

applications due to an inherent encapsulation and averaging of noise sample ensembles, enabling 

both a direct noise floor reduction and improved estimation accuracy. In recent work, the 

spatiotemporal estimation concept has been extended to noise filtering of OCT diagnostic image 

cubes in which a characteristic multiplicative ‘speckle’ noise process predominates. MMSE optimal 

noise transfer is obtained via a multidimensional Weiner filter formulation whereby multiplicative 

noise is approximated as a non-stationary additive process exhibiting significant noise/signal cross-

correlation. In benchmark tests, the Spatiotemporal Video Denoise (SVD) filter structure exhibits 

an effective noise attenuation with minimal loss of image sharpness or detail. In subsequent 

experimentation this result was extended to generic content in which both additive and 

multiplicative noise sources are present. 

 

We then focus upon the noise sampling component, whereby calculation of a given filter transfer 

function hinges upon accuracy of component PSD estimator terms. It then follows, a reduced filter 

performance may be expected where PSD estimators do not accurately reflect actual noise process 

statistics. In particular, noise samples must not be corrupted by residual signal information in 

generation of statistical bias. This requirement forms the basic selection criterion for a candidate 

noise sample space; to the extent PSD estimators exhibit bias, a suboptimal noise transfer may 

accrue. 

 

As originally conceived, SVD noise estimation hinges upon prespecification of contiguous 

image sample regions, noise-like and persistent over successive frames. However, despite 

achieving an effective filter realization, it became apparent sample regions meeting these 

requirements are not generally available for all content of interest. Further, the prescan and analysis 

steps implicit to prespecification are sequential/blocking on an ASVD process schedule and thus 

incompatible with Amdahl acceleration as a concurrent streaming process. We address these 

problems via a schema in which per-pixel noise sample ensembles are extracted directly from 

spatiotemporal estimation buffers. In this manner, image sample regions are adaptively rendered 

as complete frames obviating any requirement for special content structure. This fully adaptive 

SVD (ASVD) is thus rendered as a parallelizable streaming process on arbitrary signal-plus-noise 

mixtures. 

 

As displayed in figure-2 below, ASVD is optionally incorporated as a hierarchical building-

block component within VPC, whereby VPC is itself a hierarchical component of SRRS. 

 



 
 

Figure-1: SRRS Architectural Form Incorporating VPC/ASVD 
 

PMA 

 

Photometric Warp (PWRP) superresolution is defined as an image processing technique in 

which luminance of any image pixel is rendered dependent upon an auxiliary function of some 

form. Accordingly, PWRP superresolution is obtained where the referenced auxiliary function is 

also a reconstruction operator. Further, where the reconstruction operator domain is a single frame, 

we refer to the resulting superresolution construct as single-frame superresolution (SFSR). 

 

As displayed in figure-2, the particular PWRP/SFSR used in this work employs an edge-

luminance model both symmetric and scale invariant. In this instance, model symmetry is motivated 

by an assumed symmetry associated with the fundamental edge-blurring process. Scale-invariance 

is then assured via a minimal pixel support to which a set of gradient operators are applied for sub-

pixel accurate edge-structure detection. In essence, luminance of a detected edge is modified so as 

to exactly match the luminance model. As an example, support for the edge prototype displayed in 

figure-1 is reduced from 4-pixels pre-Warp to 2-pixels post-Warp in generation of a 300% increased 

slope (sharpness) post-superresolution. In what follows, PWRP/SFSR extends this edge-

reconstruction model to arbitrary curvilinear structures via directional correlation along edge-

detection contours. 

 

As described, PWRP critically depends upon localization of curvilinear edge structures at 

subpixel resolution. For this purpose, we employ a tailored nonlinear filter that provides this 

localization at response surface extrema. Once the locus and orientation of an edge-structure at all 

constituent points is determined, a set of reconstruction filters is instanced at all associated image-

space coordinates. The logical sum of all such instances then constitute pattern manifold assembly 

(PMA) as a necessary component of PWRP/SFSR and hence is also functionally implicit to each 

of  SREU, SRED, and SRNR processing blocks. 



 

 
 

Figure-2: Exemplary Photometric Warp Edge Reconstruction 

 

In table-2 above, PMA accrues as a building-block component of SRED, SREU, and SRNR blocks, 

in turn instanced as hierarchical building-block components of SRRS, (re: figure-2). 

 

SREU/SRED/SRNR 

 

Each of the superresolution blocks SREU (upscaler), SRED (downscaler), and SRNR (Nyquist 

refinement) employ photometric warp (PWRP) for purposes of sub-pixel localization of points 

along curvilinear (1D/line-like) structures appearing within a frame. Resampling and anti-alias 

filtering are then added so as to render any indicated rescaling process formally valid (re: SRRS). 

 

Here we note SRNR as something of an exception in that sampling rate remains invariant. Thus, 

the associated Nyquist limit remains the same and no resampling is performed, (i.e., with no 

attendant requirement for anti-alias filtering). It is then significant the sole purpose of SRNR is 

image refinement via what is essentially a sharpening process that renders a given frame at 

maximum resolution, subject to bandwidth limits imposed by Nyquist sampling theory. The major 

advantage of this particular sharpening process is we avoid noise preemphasis as might result from 

use of a linear high-pass filter (HPF). Furthermore, inasmuch as each of SREU, SRED, and SRNR 

are themselves linear, there is no noise upconversion as might result from application of a nonlinear 

filter of one form or another. 



 

For purposes of software reuse, architectural simplification, and highest possible processing 

efficiency, SREU, SRED, and SRNR are encapsulated within the SRRS construct. As displayed in 

tables-2,3, SRRS is instanced as a component block in SREC, BDA,BDE, BDD, MFVA, SRAU, 

and SRRU. Here, we note not all SRRS internal processing pathways are required in each case. 

Accordingly, in interests of processing resource conservation, unused SRRS pathways are 

eliminated via conditional compilation according to an associated design specification. In this 

manner, any one of SRRS/SREU, SRRS/SRED, or SRRS/SRNR many be isolated according to 

need. For example, where we consider SRRS as a block-component of the superresolution enabled 

video CODEC (SREC) construct displayed in figure-2, the optional ASVD is deleted for both 

ENCODE and DECODE, SREU is deleted for ENCODE, and SRED is deleted for DECODE. 

 

SREC 

 

    A number of lossy video CODECs such as MPEG-4 have found widespread acceptance as a 

video compression technology solution in today’s marketplace. In principle, a maximum 200:1 

compression ratio is possible with this CODEC. However, the fact MPEG-4 employs a lossy, 

block-based differential encoding scheme limits useful compression to a more moderate 20:1-

40:1 range. From an information theoretic perspective, this reduction may be regarded as 

manifestation of the fact, at the scale of a given blocksize, only so much redundancy is present in 

any given image sequence. One consequence of this is overly aggressive redundancy-based 

encoding tends to create excessive artifacts and noise in an output image. 

 

While block-based differential video compression has proven very successful, the inherent 

performance limitations of this approach also serves to hinder evolution of streaming video and 

video surveillance system applications for which an increased level of compression performance is 

critical. In the superresolution-enabled video codec (SREC) considered here, we adopt a 

complementary approach whereby the previously discussed photometric warp (PWRP) 

superresolution is applied to realization of an increased total compression ratio capability. Use of 

PWRP in this context is motivated by the fact reconstruction filtering of the type being considered 

is super-Nyquist. That is to say, in upscaling of a given image, reconstruction filtering necessarily 

synthesizes spectral content at frequencies above an initial Nyquist limit characteristic of a lower 

resolution. Thus, the internal representation that governs instancing of reconstruction filters may be 

leveraged as a codebook for an optimal encoding of corresponding structure in the target image. 

With use of such an encoding, processing gain realization hinges upon two criteria; (i) the encoded 

edge-contour structure representation remains more compact than the corresponding spectral 

representation and (ii) object and edge-contour spectra remain separable at a given Nyquist rate 

boundary. In the specific case of photometric warp, these criteria are satisfied via; (i) an implicit 

2D-to-1D dimensional reduction rooted in processing of curvilinear edge-contours bordering 

objects, (i.e. as opposed to objects), and (ii) partitioning of edge-contour spectra are resolved to an 

extent consistent with accurate edge-contour reconstruction. Accordingly, video transmission 

payload is reduced to a sum consisting of; (i) edge-contour encoding plus (ii) source downsampled 

to the defined super-Nyquist boundary. Noting the downsampled source may itself be encoded by 

some CODEC operating on an orthogonal compression principle, (i.e. encode distinct structure) 

total compression is then given by a product of compression ratios generated via what amounts to 

a two-stage succession of CODEC transformations. In what follows, this seminal idea forms the 



basis of a Superresolution-Enabled [video] CODEC (SREC) that employs a lossy, differential/block 

encoded CODEC such as MPEG-4 as a second layer. In a comprehensive series of experimental 

trials, this construct is then shown capable of an ‘x4’, ‘x16’ increased compression ratio capability 

relative to MPEG-4 alone. For example, if stage 1,2 compression ratios are 4:1 and 30:1 

respectively, the total compression is 4x30:1 = 120:1, adjusted downward so as to account for stage-

1 reconstruction filter bank instance ENCODE. 

 

It is noteworthy, a variety of SREC architectural forms are possible, depending upon specific 

blocks chosen for layer-1,2 processing. However, the source-encoded form displayed in figure-3 

serves to illustrate the basic operational principle. In streaming transport mode, as a single-frame 

superresolution (SFSR) process, SREC accepts and processes video frame-by-frame, according to 

an ENCODE-transport-DECODE schema: 

 

ENCODE 

 

(1) Pattern Manifold Assembly (PMA) 

(2) ENCODE PWRP reconstruction filter bank instances (layer-1) 

(3) DOWNSAMPLE frame 

(4) ENCODE downsampled frame (layer-2) 

(5) INTERLEAVE PWRP/Downsampled frame data 

(6) TRANSPORT Interleaved data stream (TX) 

 

DECODE 

 

(1) TRANSPORT interleaved data stream (RX) 

(2) DEINTERLEAVE PWRP/Downsampled frame-data 

(3) DECODE downsampled frame (layer-2) 

(4) UPSAMPLE frame 

(5) DECODE PWRP reconstruction filter bank instances (layer-1) 

(6) RECONSTRUCT frame at original resolution 

 

As might be expected, DECODE forms an inverted processing sequence relative to ENCODE. It is 

also significant, given PMA sub-pixel resolution, DECODE reconstruction filters are applied at the 

exact image coordinates at which filter instance ENCODE was performed. In this manner, edge 

dislocation noise in the reconstructed image is effectively reduced to zero. 

 

 

 



 
 

Figure-3: SREC ENCODE/DECODE Block Architecture 

 

In a second SREC realization previously discussed, selected constituent blocks are replaced with 

SRRS instances, as described above: 

 

 
 

Figure-4: VPC/SRRS-based SREC Architectural Form 

 

 

 

  



Video Analytics 

 

Dimension Inc is well known for development of advanced image processing technologies 

pertinent to high-performance video applications such as IoT, Surveillance, Analytics, Video 

Conferencing, VR/AR, and Streaming Video Platforms. In particular, Dimension has focused upon 

image and video reconstruction, denoise, and compression (CODEC) as those processing 

components most critical to video system performance optimization. From a technical perspective, 

this work has been successful in creation of new algorithms of extraordinary power. Most notably, 

combination of superresolution reconstruction, spatiotemporal denoise, Nyquist refinement, and 

superresolution-based video compression have together enabled video processing gain at levels 

heretofore unavailable in the video technology marketplace. 

 

As a matter of strategic planning, Dimension R&D has challenged itself with identification of 

new and emerging market sectors for which Dimension’s technology may prove beneficial. One 

such is the video analytics (‘VA’) domain. From a systems perspective, video analytics applications 

are quite simple. As shown in figure-5, source video is applied to a bank of machine learning (‘ML’) 

classifiers that serve to detect and report objects appearing within a video sequence. In 

experimentation with such systems, Dimension has discovered an essential relation between video 

analytics quality of result (‘QoR’) and input video quality. To wit, the error rate of any machine 

learning classifier one might employ for purposes of video analytics is highly dependent upon input 

video resolution and signal-to-noise ratio (‘SNR’). In retrospect, this result may seem obvious. 

However, it is one thing to guess at a relationship and yet another to prove its existence and then 

quantify it. Succinctly stated, Dimension has done exactly the latter, the most notable result of 

which is the video preconditioning (‘VPC’) subsystem cited in tables-1,2 above and discussed 

within context of superresolution-enabled rescaling (SRRS). 

 

 
 

Figure-6: Exemplary Video Analytics System 

 

It is significant VPC incorporates two image/video processing blocks critical to video QoR 

optimization; (i) adaptive spatiotemporal denoise (ASVD) and (ii) superresolution-enabled Nyquist 

refinement (SRNR). These blocks are each Dimension innovations and generic in applicability. 

Thus, it is perhaps obvious VPC would prove of benefit in applications other than the previously 

discussed superresolution-enabled video CODEC (SREC). In a recent expansion of technical focus, 

Dimension Inc has identified Video Analytics (VA) and BigData (BD) processing as two such 

application categories for which VPC will prove beneficial. In particular, Dimension has combined 

those previously mentioned image processing blocks in creation of a video preconditioning pipeline 

technology that serves to optimize performance of neural-network (NN) based machine learning 

classifiers we employ in VA and BD applications. More precisely, VPC generates a composite 



processing gain that minimizes classifier error rates across a broad swath of input video quality. For 

example, use of VPC as a VA front-end can be expected to improve overall quality-of-result (QoR). 

It should be noted where input video is noisy or exhibits reduced bandwidth, this improvement can 

be dramatic. 

 

BigData-IDE 

 

It should be emphasized, , the VPC advantage articulated here applies to all video analytics 

systems. Arguably, this alone constitutes a highly significant result. However, it soon became 

apparent Dimension Inc could go much further. With the proven success of VPC, it was a small 

conceptual step to consider just how VPC might be applied within context of any ML-based 

information processing on video content. It was at this juncture, Dimension shifted its attention to 

the problem of BigData. In this consideration, two facts became apparent; (i) while the term 

BigData is currently prominent in the media, a formal definition of the term seems absent and (ii) 

whatever we might take to constitute BigData, more than 50% accrues in form of video. This is in 

fact Dimension’s entry point to the BigData arena. Here, we will adopt a working-definition of 

BigData in terms of the sum total of all our electronics communications. Now, with this conceptual 

stake-in-the-ground, it seems reasonable to conclude the cited ‘more than 50% video’ represents a 

significant strategic opportunity for application of VPC technology within context of BigData 

exploration, or for that matter any extraction of video-based information from the BigData 

DATAVERSE. 

 

The bottom-line is, at the current level of technological evolution, we might consider BigData 

DATAVERSE as existing only in form of a conceptual icon. That is to say, beyond unstructured 

web-queries, there exists no machine compatible representation for which BigData accrues as an 

efficiently searchable information resource. This of course represents an impediment to any 

expanded application of Dimension technology because the BigData market sector is in effect non-

existent. However, as a matter of strategic consideration, it is also obvious this BigData we envision 

will evolve as the next-big-thing within the video analytics milieu. It then follows BigData itself 

must be invented and, as the immortal John Lennon once advocated, we must think differently in 

doing so. Why is this? In terms of formal complexity, the BigData DATAVERSE is understood as 

exascale. More simply put, ‘BigData’ is indeed very big! It then follows, the essential problem of 

BigData devolves to one of exascale processing. It is this rationale that forms the basis for 

Dimension’s consideration of processing infrastructure sufficient to development of video-based 

information processing applications on BigData DATAVERSE. This would of course include 

classic video analytics applications as we have come to understand them, but now with addition of 

more advanced information processing capabilities. 

 

BDA/BDE/BDD 

 

From what we now construe as the BigData application domain, Dimension has resolved the 

problem of BigData processing into three component tasks; (i) assembly, (ii) exploration, and (iii) 

discovery. In simplest terms, BigData Assembly (BDA) is the rendering of an unstructured 

DATAVERSE into an efficiently searchable form. This task is comprised of an essentially 

autonomous process of building an entity-attribute graph (EAG) representation to which existing 

and readily available graph-search techniques may be applied. BigData Exploration (BDE) is then 



extraction of statistics on keywords, declaratives, and relations (KDR) pertinent to truth-value of 

some logical-conjecture-on-data (LCOD) posed within context of the analytics we wish to perform. 

BigData Discovery (BDD) is then the identification of new KDR elements, with subsequent 

reapplication of BDA, BDE, and possible restatement of any LCOD we apply within context of 

BDE. In effect, BDD will initiate invocation of BDA and BDE as subprocesses within context of 

an overarching problem of evaluating LCOD truth-values. Dimension’s strategic vision is BDA, 

BDE, and BDD together form a complete processing infrastructure for development of video 

analytics platforms on BigData DATAVERSE. Based upon this notion, an integrated processing 

environment for BigData is proposed in figure-7, each component of which will employ VPC 

technology. From a larger perspective, we see Dimension is thrust into a position of not only 

developing new video analytics technology but also contributing to an entirely new BigData market 

sector. It goes without saying, this has proven an exciting prospect for Dimension’s further 

evolution as a technology leader. 

 

 
 

Figure-7: Dimension BigData Application Suite 

 

It is also true each of the aforementioned BDA, BDE, and BDD applications incur significant 

nondeterminism. That is to say, these tasks are appropriately cast in terms of goal-directed, 

nondeterministic solution-search we understand as characteristic of artificial intelligence (AI) 

applications. Accordingly, AI architectural forms are indicated for each of these component 

processes. A highly simplified architectural form by which all component processes may be 

invoked is displayed in figure-8 for which we note the aforementioned BDD-initiated invocation of 

BDA and BDE AIs is implemented via a top-level supervisory process that is also AI. In this 

manner, the problem of BigData DATAVERSE processing further devolves to knowledge-based 

application of BDA, BDE, and BDD, the result of which we represent as a solution-state trajectory 

comprised of EAG node-visitations. In this particular architectural variant, we also note use of 

Dimension’s superresolution-enabled video compression (SREC) based network video transport 

(BDT) along with a cloud-based BDA implementation. As displayed in figure-4 above, SREC 



implementation is further simplified and unified with use of VPC as an architectural building-block. 

It should be noted the resulting hierarchical AI architectural-form is representative of an entire 

class of cutting-edge innovations, most generally for AI technology and specifically for exascale 

processing on BigData DATAVERSE. 

 

 

 
 

Figure-8: Cloud-Distributed BigData AI Architecture 

 

SRAU 

 

Pending 
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Pending 

 

 

 

 


